Nouredine Zettili
Chapter 5
Angular Momentum - all with Video Answers
Educators
Chapter Questions
If $\hat{L}_{ \pm}$and $\hat{R}_{ \pm}$are defined by $\hat{L}_{ \pm}=\hat{L}_x \pm i \hat{L}_y$ and $\hat{R}_{ \pm}=\hat{X} \pm i \hat{Y}$, prove the following commutators: $\left[\hat{L}_{ \pm}, \hat{R}_{ \pm}\right]=0,\left[\hat{L}_{ \pm}, \hat{R}_{\mp}\right]= \pm 2 \hbar \hat{Z}$.
Check back soon!
If $\hat{L}_{ \pm}$and $\hat{R}_{ \pm}$are defined by $\hat{L}_{ \pm}=\hat{L}_x \pm i \hat{L}_y$ and $\hat{R}_{ \pm}=\hat{X} \pm i \hat{Y}$, prove the following commutators: $\left[\hat{L}_{ \pm}, \hat{Z}\right]=\mp \hbar \hat{X},\left[\hat{L}_z, \hat{R}_{\mp}\right]= \pm \hbar \hat{R}_{ \pm}$and $\left[\hat{L}_z, \hat{Z}\right]=0$.
Check back soon!
Prove the following two relations: $\hat{\vec{R}} \cdot \hat{\vec{L}}=0$ and $\hat{\vec{P}} \cdot \hat{\vec{L}}=0$.
Adriano Chikande
Numerade Educator
Prove the following relation: $\left[\hat{L}_z, \cos \varphi\right]=i \hbar \sin \varphi$, where $\varphi$ is the azimuthal angle.
David Morabito
Numerade Educator
Show that $\left[\hat{L}_z, \sin (2 \varphi)\right]=2 i \hbar\left(\sin ^2 \varphi-\cos ^2 \varphi\right)$, where $\varphi$ is the azimuthal angle. Hint: $[\hat{A}, \hat{B} \hat{C}]=\hat{B}[\hat{A}, \hat{C}]+[\hat{A}, \hat{B}] \hat{C}$
David Morabito
Numerade Educator
Using the properties of $\hat{J}_{+}$and $\hat{J}_{-}$, calculate $|j, \pm j\rangle$ and $|j, \pm m\rangle$ as functions of the action of $\hat{J}_{ \pm}$on the states $|j, \pm m\rangle$ and $|j, \pm j\rangle$, respectively.
Check back soon!
Consider the operator $\hat{A}=\frac{1}{2}\left(\hat{J}_x \hat{J}_y+\hat{J}_y \hat{J}_x\right)$.
(a) Calculate the expectation value of $\hat{A}$ and $\hat{A}^2$ with respect of the state $|j, m\rangle$.
(b) Use the result of (a) to find an expression for $\hat{A}^2$ in terms of: $\hat{\vec{J}}^4, \hat{\vec{J}}^2, \hat{J}_z^2, \hat{J}_{+}^4, \hat{J}_{-}^4$.
Check back soon!
Consider the expression $f(\theta, \varphi)=3 \sin \theta \cos \theta e^{i \varphi}-2\left(1-\cos ^2 \theta\right) e^{2 i \varphi}$.
(a) Write $f(\theta, \varphi)$ in terms of the spherical harmonics.
(b) Write the expression found in (a) in terms of the Cartesian coordinates.
(c) Is $f(\theta, \varphi)$ an eigenstate of $\hat{\vec{L}}^2$ or $\hat{L}_z$ ?
(d) Find the probability of measuring $2 \hbar$ for the $z$-component of the orbital angular momentum.
Check back soon!
Show that $\hat{L}_z\left(\cos ^2 \varphi-\sin ^2 \varphi+2 i \sin \varphi \cos \varphi\right)=2 \hbar^{2 i \varphi}$, where $\varphi$ is the azimuthal angle.
David Morabito
Numerade Educator
Find the expressions for the spherical harmonics $Y_{30}(\theta, \varphi)=\sqrt{7 / 16 \pi}\left(5 \cos ^3 \theta-3 \cos \theta\right)$ and $Y_{3, \pm 1}(\theta, \varphi)=\mp \sqrt{21 / 64 \pi} \sin \theta\left(5 \cos ^2 \theta-1\right) e^{ \pm i \varphi}$ in terms of the Cartesian coordinates $x, y, z$.
Sam Stansfield
Numerade Educator
(a) Show that the following expectation values between $|l m\rangle$ states satisfy the relations $\left\langle\hat{L}_x\right\rangle=\left\langle\hat{L}_y\right\rangle=0$ and $\left\langle\hat{L}_x^2\right\rangle=\left\langle\hat{L}_y^2\right\rangle=\frac{1}{2}\left[l(l+1) \hbar^2-m^2 \hbar^2\right]$.
(b) Verify the inequality $\Delta L_x \Delta L_y \geq \hbar^2 m / 2$, where $\Delta L_x=\sqrt{\left\langle L_x^2\right\rangle-\left\langle L_x\right\rangle^2}$.
Check back soon!
A particle of mass $m$ is fixed at one end of a rigid rod of negligible mass and length $R$. The other end of the rod rotates in the $x y$ plane about a bearing located at the origin, whose axis is in the $z$-direction.
(a) Write the the system's total energy in terms of its angular momentum $L$.
(b) Write down the time-independent Schrödinger equation of the system. Hint: In spherical coordinates, only $\varphi$ varies.
(c) Solve for the possible energy levels of the system, in terms of $m$ and the moment of inertia $I=m R^2$.
(d) Explain why there is no zero-point energy.
Eduard Sanchez
Numerade Educator
Consider a system which is described by the state
$$
\psi(\theta, \varphi)=\sqrt{\frac{3}{8}} Y_{11}(\theta, \varphi)+\sqrt{\frac{1}{8}} Y_{10}(\theta, \varphi)+A Y_{1,-1}(\theta, \varphi),
$$
where $A$ is a real constant
(a) Calculate $A$ so that $|\psi\rangle$ is normalized.
(b) Find $\hat{L}_{+} \psi(\theta, \varphi)$.
(c) Calculate the expectation values of $\hat{L}_x$ and $\hat{\vec{L}}^2$ in the state $|\psi\rangle$.
(d) Find the probability associated with a measurement that gives zero for the $z$-component of the angular momentum.
(e) Calculate $\left\langle\Phi\left|\hat{L}_z\right| \psi\right\rangle$ and $\left\langle\Phi\left|\hat{L}_{-}\right| \psi\right\rangle$ where
$$
\Phi(\theta, \varphi)=\sqrt{\frac{8}{15}} Y_{21}(\theta, \varphi)+\sqrt{\frac{4}{15}} Y_{10}(\theta, \varphi)+\sqrt{\frac{3}{15}} Y_{2,-1}(\theta, \varphi) .
$$
Check back soon!
(a) Using the commutation relations of angular momentum, verify the validity of the (Jacobi) identity: $\left[\hat{J}_x,\left[\hat{J}_y, \hat{J}_z\right]\right]+\left[\hat{J}_y,\left[\hat{J}_z, \hat{J}_x\right]\right]+\left[\hat{J}_z,\left[\hat{J}_x, \hat{J}_y\right]\right]=0$.
(b)Prove the following identity: $\left[\hat{J}_x^2, \hat{J}_y^2\right]=\left[\hat{J}_y^2, \hat{J}_z^2\right]=\left[\hat{J}_z^2, \hat{J}_x^2\right]$.
(c) Calculate the expressions of $\hat{L}_{-} \hat{L}_{+} Y_{l m}(\theta, \varphi)$ and $\hat{L}_{+} \hat{L}_{-} Y_{l m}(\theta, \varphi)$, and then infer the commutator $\left[\hat{L}_{+} \hat{L}_{-}, \hat{L}_{-} \hat{L}_{+}\right] Y_{l m}(\theta, \varphi)$.
Ajay Singhal
Numerade Educator
(a) Show the following commutation relations:
$$
\begin{array}{lll}
{\left[\hat{Y}, \hat{L}_y\right]=0,} & {\left[\hat{Y}, \hat{L}_z\right]=i \hbar \hat{X},} & {\left[\hat{Y}, \hat{L}_x\right]=-i \hbar \hat{Z},} \\
{\left[\hat{Z}, \hat{L}_z\right]=0,} & {\left[\hat{Z}, \hat{L}_x\right]=i \hbar \hat{Y},} & {\left[\hat{Z}, \hat{L}_y\right]=-i \hbar \hat{X} .}
\end{array}
$$
(b) Using a cyclic permutation of $x y z$, apply the results of (a) to infer expressions for $\left[\hat{X}, \hat{L}_x\right],\left[\hat{X}, \hat{L}_y\right]$ and $\left[\hat{X}, \hat{L}_z\right]$.
(c) Use the results of (a) and (b) to calculate $\left[\hat{R}^2, \hat{L}_x\right],\left[\hat{R}^2, \hat{L}_y\right]$ and $\left[\hat{R}^2, \hat{L}_x\right]$, where $\hat{R}^2=\hat{X}^2+\hat{Y}^2+\hat{Z}^2$
PK
Pramod Kumar
Numerade Educator
(a) Show the following commutation relations:
$$
\begin{array}{lll}
{\left[\hat{P}_y, \hat{L}_y\right]=0,} & {\left[\hat{P}_y, \hat{L}_z\right]=i \hbar \hat{P}_x,} & {\left[\hat{P}_y, \hat{L}_x\right]=-i \hbar \hat{P}_z,} \\
{\left[\hat{P}_z, \hat{L}_z\right]=0,} & {\left[\hat{P}_z, \hat{L}_x\right]=i \hbar \hat{P}_y,} & {\left[\hat{P}_z, \hat{L}_y\right]=-i \hbar \hat{P}_x .}
\end{array}
$$
(b) Use the results of (a) to infer by means of a cyclic permutation the expressions for $\left[\hat{P}_x, \hat{L}_x\right],\left[\hat{P}_x, \hat{L}_y\right]$ and $\left[\hat{P}_x, \hat{L}_z\right]$.
(c) Use the results of (a) and (b) to calculate $\left[\hat{P}^2, \hat{L}_x\right],\left[\hat{R}^2, \hat{L}_y\right]$ and $\left[\hat{R}^2, \hat{L}_x\right]$, where $\hat{P}^2=\hat{P}_x^2+\hat{P}_y^2+\hat{P}_z^2$
PK
Pramod Kumar
Numerade Educator
Consider a particle whose wave function is given by $\psi(x, y, z)=A\left[(x+z) y+z^2\right] / r^2-A / 3$, where $A$ is a constant.
(a) Is $\psi$ an eigenstate of $\hat{\vec{L}}^2$ ? If yes, what is the corresponding eigenvalue? Is it also an eigenstate of $\hat{L}_z$ ?
(b) Find the constant $A$ so that $\psi$ is normalized.
(c) Find the relative probabilities for measuring the various values of $\hat{L}_z$ and $\hat{L}^2$, and then calculate the expectation values of $\hat{L}_z$ and $\hat{\vec{L}}^2$.
(d) Calculate $\hat{L}_{ \pm}|\psi\rangle$ and then infer $\left\langle\psi\left|\hat{L}_{ \pm}\right| \psi\right\rangle$.
Check back soon!
Consider a system which is in the state
$$
\psi(\theta, \varphi)=\sqrt{\frac{2}{13}} Y_{3,-3}+\sqrt{\frac{3}{13}} Y_{3,-2}+\sqrt{\frac{3}{13}} Y_{30}+\sqrt{\frac{3}{13}} Y_{3,-2}+\sqrt{\frac{2}{13}} Y_{33} .
$$
(a) If $\hat{L}_z$ were measured, what values will one obtain and with what probabilities?
(b) If after a measurement of $\hat{L}_z$ we find $l_z=2 \hbar$, calculate the uncertainties $\Delta L_x$ and $\Delta L_y$ and their product $\Delta L_x \Delta L_y$.
(a) Find $\left\langle\psi\left|\hat{L}_x\right| \psi\right\rangle$ and $\left\langle\psi\left|\hat{L}_y\right| \psi\right\rangle$.
Check back soon!
(a) Calculate the energy eigenvalues of an axially symmetric rotator and find the degeneracy of each energy level (i.e., for each value of the azimuthal quantum number $m$, how many states $|l \mathrm{~m}\rangle$ correspond to the same energy). We may recall that the Hamiltonian of an axially symmetric rotator is given by
$$
\hat{H}=\frac{\hat{L}_x^2+\hat{L}_y^2}{2 I_1}+\frac{\hat{L}_z^2}{2 I_2}
$$
where $I_1$ and $I_2$ are the moments of inertia.
(b) From part (a) infer the energy eigenvalues for the various levels of $l=3$.
(c) In the case of a rigid rotator (i.e., $I_1=I_2=I$ ), find the energy expression and the corresponding degeneracy relation.
(d) Calculate the orbital quantum number $l$ and the corresponding energy degeneracy for a rigid rotator where the magnitude of the total angular momentum is $\sqrt{56} \hbar$.
Abhijit Das
Numerade Educator
Consider a system of total angular momentum $j=1$. We are interested here in the measurement of $\hat{J}_y$; its matrix is given by
$$
\hat{J}_y=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) .
$$
(a) What are the possible values will we obtain when measuring $\hat{J}_y$ ?
(b) Calculate $\left\langle\hat{J}_z\right\rangle,\left\langle\hat{J}_z^2\right\rangle$ and $\Delta J_z$ if the system is in the state $j_y=\hbar$.
(c) Repeat (b) for $\left\langle\hat{J}_x\right\rangle,\left\langle\hat{J}_x^2\right\rangle$ and $\Delta J_x$.
Check back soon!
Calculate $Y_{3, \pm 2}(\theta, \varphi)$ by applying the ladder operators $\hat{L}_{ \pm}$on $Y_{3, \pm 1}(\theta, \varphi)$.
Abhijit Das
Numerade Educator
Consider a system of total angular momentum $j=1$. We want to carry out measurements on
$$
\hat{J}_z=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$
(a) What are the possible values will we obtain when measuring $\hat{J}_z$ ?
(b) Calculate $\left\langle\hat{J}_x\right\rangle,\left\langle\hat{J}_x^2\right\rangle$ and $\Delta J_x$ if the system is in the state $j_z=-\hbar$.
(c) Repeat (b) for $\left\langle\hat{J}_y\right\rangle,\left\langle\hat{J}_y^2\right\rangle$ and $\Delta J_y$.
Check back soon!
(a) Find the eigenvalues and eigenstates of the spin operator $\vec{S}$ of an electron in the direction of a unit vector $\vec{n}$; assume that $\vec{n}$ lies in the $y z$ plane.
(b) Find the probability of measuring $\hat{S}_z=-\hbar / 2$.
(c) Assuming that the eigenvectors of the spin calculated in (a) correspond to $t=0$, find these eigenvectors at time $t$.
Check back soon!
Consider a system whose spin direction is in the $x y$ plane.
(a) Find the eigenvalues and eigenstates of the spin operator $\vec{S}$ of an electron in the direction of a unit vector $\vec{n}$; assume that $\vec{n}$ lies in the $x y$ plane.
(b) Find the probability of measuring $\hat{S}_z=\hbar / 2$.
(c) Assuming that the eigenvectors of the spin calculated in (a) correspond to $t=0$, find these eigenvectors at time $t$.
Dominador Tan
Numerade Educator
Consider a system whose wave function is $\psi(x, y, z)=(1 / 4 \sqrt{\pi}) z / r+(1 / \sqrt{3 \pi}) x / r$.
(a) Express $\psi(x, y, z)$ in terms of the spherical harmonics then calculate $\hat{\vec{L}}^2 \psi(x, y, z)$ and $\hat{L}_z \psi(x, y, z)$. Is $\psi(x, y, z)$ an eigenstate of $\hat{\vec{L}}^2$ or $\hat{L}_z$ ?
(b) Calculate $\hat{L}_{ \pm \psi}(x, y, z)$ and $\left\langle\psi\left|\hat{L}_{ \pm}\right| \psi\right\rangle$.
(c) If a measurement of the $z$-component of the orbital angular momentum is carried out, find the probabilities corresponding to finding the results $0, \hbar$ and $-\hbar$.
Check back soon!
Consider a system whose wave function is $\psi(x, y, z)=\frac{1}{2} Y_{00}+\frac{1}{\sqrt{3}} Y_{11}+\frac{1}{2} Y_{1,-1}+\frac{1}{\sqrt{6}} Y_{22}$.
(a) Is $\psi(x, y, z)$ normalized?
(b) Is $\psi(x, y, z)$ an eigenstate of $\hat{\hat{L}^2}$ or $\hat{L}_z$ ?
(c) Calculate $\hat{L}_{ \pm} \psi(x, y, z)$ and $\left\langle\psi\left|\hat{L}_{ \pm}\right| \psi\right\rangle$.
(d) If a measurement of the $z$-component of the orbital angular momentum is carried out, find the probabilities corresponding to finding the results $0, \hbar,-\hbar$ and $2 \hbar$.
Check back soon!
Using the expression of $\hat{L}_{-}$in spherical coordinates, show the following two commutators: $\left[\hat{L}_{-}, e^{-i \varphi} \sin \theta\right]=0$ and $\left[\hat{L}_{-}, \cos \theta\right]=\hbar e^{-i \varphi} \sin \theta$
David Morabito
Numerade Educator
Consider a particle whose angular momentum is $l=1$.
(a) Find the eigenvalues and eigenvectors, $\left|1, m_x\right\rangle$, of $\hat{L}_x$.
(b) Express the state $\left|1, m_x=1\right\rangle$ as a linear superposition of the eigenstates of $\hat{L}_z$. Hint: you need first to find the eigenstates of $L_x$ and find which of them corresponds to the eigenvalue $m_x=1$; this eigenvector will be expanded in the $z$ basis.
(c) What is the probability of measuring $m_z=1$ when the particle in the eigenstate $\left|1, m_x=1\right\rangle$ ? What about the probability corresponding to measuring $m_z=0$ ?
(c) Suppose that a measurement of the $z$-component of angular momentum is performed, and that the result $m_z=1$ is obtained. Now we measure the $x$-component of angular momentum. What are the possible results and with what probabilities?
Dominador Tan
Numerade Educator
Make polar plots in the $x z$ plane with the square magnitude $\left|Y_{l m}\right|^2$ as the distance from the origin as a function of $\theta$ for the cases $l=1$ and $l=2$ for all values of $m$.
Zachary Warner
Numerade Educator
Consider a system which is given in the following angular momentum eigenstates $|l, m\rangle$ :
$$
|\psi\rangle=\frac{1}{\sqrt{7}}|1,-1\rangle+A|1,0\rangle+\sqrt{\frac{2}{7}}|1,1\rangle,
$$
where $A$ is a real constant
(a) Calculate $A$ so that $|\psi\rangle$ is normalized.
(b) Calculate the expectation values of $\hat{L}_x, \hat{L}_y, \hat{L}_z$, and $\hat{\vec{L}}^2$ in the state $|\psi\rangle$.
(c) Find the probability associated with a measurement that gives $1 \hbar$ for the $z$-component of the angular momentum.
(d) Calculate $\left\langle 1, m\left|\hat{L}_{+}^2\right| \psi\right\rangle$ and $\left\langle 1, m\left|\hat{L}_{-}^2\right| \psi\right\rangle$.
Check back soon!
Consider a particle of angular momentum $j=3 / 2$.
(a) Find the matrices representing the operators $\hat{J}^2, \hat{J}_x, \hat{J}_y$, and $\hat{J}_z$ in the $\left\{\left|\frac{3}{2}, m\right\rangle\right\}$ basis.
(b) Using these matrices, show that $\hat{J}_x, \hat{J}_y, \hat{J}_z$ satisfy the commutator $\left[\hat{J}_x, \hat{J}_y\right]=i \hbar \hat{J}_z$.
(c) Calculate the mean values of $\hat{J}_x$ and $\hat{J}_x^2$ with respect to the state $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$.
(d) Calculate $\Delta J_x \Delta J_y$ with respect to the state
$$
\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$
and verify that this product satisfies Heisenberg's uncertainty principle.
Check back soon!
Consider the Pauli matrices
$$
\sigma_x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$
(a) Verify that $\sigma_x^2=\sigma_y^2=\sigma_z^2=I$, where $I$ is the unit matrix
$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$
(b) Calculate the commutators $\left[\sigma_x, \sigma_y\right],\left[\sigma_x, \sigma_z\right]$, and $\left[\sigma_y, \sigma_z\right]$.
(c) Calculate the anticommutator $\sigma_x \sigma_y+\sigma_y \sigma_x$.
(d) Show that $e^{i \theta \sigma_y}=I \cos \theta+i \sigma_y \sin \theta$, where $I$ is the unit matrix.
(e) Derive an expression for $e^{i \theta \sigma_z}$ by analogy with the one for $\sigma_z$.
Anthony Ramos
Numerade Educator
Consider a spin $\frac{3}{2}$ particle whose Hamiltonian is given by
$$
\hat{H}=\frac{\varepsilon_0}{\hbar^2}\left(\hat{S}_x^2-\hat{S}_y^2\right)-\frac{\varepsilon_0}{\hbar^2} \hat{S}_z^2
$$
where $\varepsilon_0$ is a constant having the dimensions of energy.
(a) Find the matrix of the Hamiltonian and diagonalize it to find the energy levels.
(b) Find the eigenvectors and verify that the energy levels are doubly degenerate.
Dr. Rajveer Singh
Numerade Educator
Find the energy levels of a spin $\frac{5}{2}$ particle whose Hamiltonian is given by
$$
\hat{H}=\frac{\varepsilon_0}{\hbar^2}\left(\hat{S}_x^2+\hat{S}_y^2\right)+\frac{\varepsilon_0}{\hbar} \hat{S}_z
$$
where $\varepsilon_0$ is a constant having the dimensions of energy. Are the energy levels degenerate?
Dr. Rajveer Singh
Numerade Educator
Consider a particle of spin $\frac{3}{2}$. Find the matrix for the component of the spin along a unit vector with arbitrary direction $\vec{n}=(\sin \theta \cos \varphi) \vec{i}+(\sin \theta \sin \varphi) \vec{j}+(\cos \theta) \vec{k}$. Find its eigenvalues and eigenvectors.
Check back soon!