Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (2024)

Nouredine Zettili

Chapter 5

Angular Momentum - all with Video Answers

Educators

Chapter Questions

Problem 1


If $\hat{L}_{ \pm}$and $\hat{R}_{ \pm}$are defined by $\hat{L}_{ \pm}=\hat{L}_x \pm i \hat{L}_y$ and $\hat{R}_{ \pm}=\hat{X} \pm i \hat{Y}$, prove the following commutators: $\left[\hat{L}_{ \pm}, \hat{R}_{ \pm}\right]=0,\left[\hat{L}_{ \pm}, \hat{R}_{\mp}\right]= \pm 2 \hbar \hat{Z}$.

Check back soon!

Problem 2


If $\hat{L}_{ \pm}$and $\hat{R}_{ \pm}$are defined by $\hat{L}_{ \pm}=\hat{L}_x \pm i \hat{L}_y$ and $\hat{R}_{ \pm}=\hat{X} \pm i \hat{Y}$, prove the following commutators: $\left[\hat{L}_{ \pm}, \hat{Z}\right]=\mp \hbar \hat{X},\left[\hat{L}_z, \hat{R}_{\mp}\right]= \pm \hbar \hat{R}_{ \pm}$and $\left[\hat{L}_z, \hat{Z}\right]=0$.

Check back soon!

01:21
Problem 3


Prove the following two relations: $\hat{\vec{R}} \cdot \hat{\vec{L}}=0$ and $\hat{\vec{P}} \cdot \hat{\vec{L}}=0$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (5)

Adriano Chikande

Numerade Educator

08:53
Problem 4


Prove the following relation: $\left[\hat{L}_z, \cos \varphi\right]=i \hbar \sin \varphi$, where $\varphi$ is the azimuthal angle.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (8)

David Morabito

Numerade Educator

08:53
Problem 5


Show that $\left[\hat{L}_z, \sin (2 \varphi)\right]=2 i \hbar\left(\sin ^2 \varphi-\cos ^2 \varphi\right)$, where $\varphi$ is the azimuthal angle. Hint: $[\hat{A}, \hat{B} \hat{C}]=\hat{B}[\hat{A}, \hat{C}]+[\hat{A}, \hat{B}] \hat{C}$

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (11)

David Morabito

Numerade Educator

Problem 6


Using the properties of $\hat{J}_{+}$and $\hat{J}_{-}$, calculate $|j, \pm j\rangle$ and $|j, \pm m\rangle$ as functions of the action of $\hat{J}_{ \pm}$on the states $|j, \pm m\rangle$ and $|j, \pm j\rangle$, respectively.

Check back soon!

Problem 7


Consider the operator $\hat{A}=\frac{1}{2}\left(\hat{J}_x \hat{J}_y+\hat{J}_y \hat{J}_x\right)$.
(a) Calculate the expectation value of $\hat{A}$ and $\hat{A}^2$ with respect of the state $|j, m\rangle$.
(b) Use the result of (a) to find an expression for $\hat{A}^2$ in terms of: $\hat{\vec{J}}^4, \hat{\vec{J}}^2, \hat{J}_z^2, \hat{J}_{+}^4, \hat{J}_{-}^4$.

Check back soon!

Problem 8


Consider the expression $f(\theta, \varphi)=3 \sin \theta \cos \theta e^{i \varphi}-2\left(1-\cos ^2 \theta\right) e^{2 i \varphi}$.
(a) Write $f(\theta, \varphi)$ in terms of the spherical harmonics.
(b) Write the expression found in (a) in terms of the Cartesian coordinates.
(c) Is $f(\theta, \varphi)$ an eigenstate of $\hat{\vec{L}}^2$ or $\hat{L}_z$ ?
(d) Find the probability of measuring $2 \hbar$ for the $z$-component of the orbital angular momentum.

Check back soon!

08:53
Problem 9


Show that $\hat{L}_z\left(\cos ^2 \varphi-\sin ^2 \varphi+2 i \sin \varphi \cos \varphi\right)=2 \hbar^{2 i \varphi}$, where $\varphi$ is the azimuthal angle.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (17)

David Morabito

Numerade Educator

04:55
Problem 10


Find the expressions for the spherical harmonics $Y_{30}(\theta, \varphi)=\sqrt{7 / 16 \pi}\left(5 \cos ^3 \theta-3 \cos \theta\right)$ and $Y_{3, \pm 1}(\theta, \varphi)=\mp \sqrt{21 / 64 \pi} \sin \theta\left(5 \cos ^2 \theta-1\right) e^{ \pm i \varphi}$ in terms of the Cartesian coordinates $x, y, z$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (20)

Sam Stansfield

Numerade Educator

Problem 11


(a) Show that the following expectation values between $|l m\rangle$ states satisfy the relations $\left\langle\hat{L}_x\right\rangle=\left\langle\hat{L}_y\right\rangle=0$ and $\left\langle\hat{L}_x^2\right\rangle=\left\langle\hat{L}_y^2\right\rangle=\frac{1}{2}\left[l(l+1) \hbar^2-m^2 \hbar^2\right]$.
(b) Verify the inequality $\Delta L_x \Delta L_y \geq \hbar^2 m / 2$, where $\Delta L_x=\sqrt{\left\langle L_x^2\right\rangle-\left\langle L_x\right\rangle^2}$.

Check back soon!

05:19
Problem 12


A particle of mass $m$ is fixed at one end of a rigid rod of negligible mass and length $R$. The other end of the rod rotates in the $x y$ plane about a bearing located at the origin, whose axis is in the $z$-direction.
(a) Write the the system's total energy in terms of its angular momentum $L$.
(b) Write down the time-independent Schrödinger equation of the system. Hint: In spherical coordinates, only $\varphi$ varies.
(c) Solve for the possible energy levels of the system, in terms of $m$ and the moment of inertia $I=m R^2$.
(d) Explain why there is no zero-point energy.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (24)

Eduard Sanchez

Numerade Educator

Problem 13


Consider a system which is described by the state
$$
\psi(\theta, \varphi)=\sqrt{\frac{3}{8}} Y_{11}(\theta, \varphi)+\sqrt{\frac{1}{8}} Y_{10}(\theta, \varphi)+A Y_{1,-1}(\theta, \varphi),
$$
where $A$ is a real constant
(a) Calculate $A$ so that $|\psi\rangle$ is normalized.
(b) Find $\hat{L}_{+} \psi(\theta, \varphi)$.
(c) Calculate the expectation values of $\hat{L}_x$ and $\hat{\vec{L}}^2$ in the state $|\psi\rangle$.
(d) Find the probability associated with a measurement that gives zero for the $z$-component of the angular momentum.
(e) Calculate $\left\langle\Phi\left|\hat{L}_z\right| \psi\right\rangle$ and $\left\langle\Phi\left|\hat{L}_{-}\right| \psi\right\rangle$ where
$$
\Phi(\theta, \varphi)=\sqrt{\frac{8}{15}} Y_{21}(\theta, \varphi)+\sqrt{\frac{4}{15}} Y_{10}(\theta, \varphi)+\sqrt{\frac{3}{15}} Y_{2,-1}(\theta, \varphi) .
$$

Check back soon!

09:51
Problem 14


(a) Using the commutation relations of angular momentum, verify the validity of the (Jacobi) identity: $\left[\hat{J}_x,\left[\hat{J}_y, \hat{J}_z\right]\right]+\left[\hat{J}_y,\left[\hat{J}_z, \hat{J}_x\right]\right]+\left[\hat{J}_z,\left[\hat{J}_x, \hat{J}_y\right]\right]=0$.
(b)Prove the following identity: $\left[\hat{J}_x^2, \hat{J}_y^2\right]=\left[\hat{J}_y^2, \hat{J}_z^2\right]=\left[\hat{J}_z^2, \hat{J}_x^2\right]$.
(c) Calculate the expressions of $\hat{L}_{-} \hat{L}_{+} Y_{l m}(\theta, \varphi)$ and $\hat{L}_{+} \hat{L}_{-} Y_{l m}(\theta, \varphi)$, and then infer the commutator $\left[\hat{L}_{+} \hat{L}_{-}, \hat{L}_{-} \hat{L}_{+}\right] Y_{l m}(\theta, \varphi)$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (28)

Ajay Singhal

Numerade Educator

33:09
Problem 15


(a) Show the following commutation relations:
$$
\begin{array}{lll}
{\left[\hat{Y}, \hat{L}_y\right]=0,} & {\left[\hat{Y}, \hat{L}_z\right]=i \hbar \hat{X},} & {\left[\hat{Y}, \hat{L}_x\right]=-i \hbar \hat{Z},} \\
{\left[\hat{Z}, \hat{L}_z\right]=0,} & {\left[\hat{Z}, \hat{L}_x\right]=i \hbar \hat{Y},} & {\left[\hat{Z}, \hat{L}_y\right]=-i \hbar \hat{X} .}
\end{array}
$$
(b) Using a cyclic permutation of $x y z$, apply the results of (a) to infer expressions for $\left[\hat{X}, \hat{L}_x\right],\left[\hat{X}, \hat{L}_y\right]$ and $\left[\hat{X}, \hat{L}_z\right]$.
(c) Use the results of (a) and (b) to calculate $\left[\hat{R}^2, \hat{L}_x\right],\left[\hat{R}^2, \hat{L}_y\right]$ and $\left[\hat{R}^2, \hat{L}_x\right]$, where $\hat{R}^2=\hat{X}^2+\hat{Y}^2+\hat{Z}^2$

PK

Pramod Kumar

Numerade Educator

33:09
Problem 16


(a) Show the following commutation relations:
$$
\begin{array}{lll}
{\left[\hat{P}_y, \hat{L}_y\right]=0,} & {\left[\hat{P}_y, \hat{L}_z\right]=i \hbar \hat{P}_x,} & {\left[\hat{P}_y, \hat{L}_x\right]=-i \hbar \hat{P}_z,} \\
{\left[\hat{P}_z, \hat{L}_z\right]=0,} & {\left[\hat{P}_z, \hat{L}_x\right]=i \hbar \hat{P}_y,} & {\left[\hat{P}_z, \hat{L}_y\right]=-i \hbar \hat{P}_x .}
\end{array}
$$
(b) Use the results of (a) to infer by means of a cyclic permutation the expressions for $\left[\hat{P}_x, \hat{L}_x\right],\left[\hat{P}_x, \hat{L}_y\right]$ and $\left[\hat{P}_x, \hat{L}_z\right]$.
(c) Use the results of (a) and (b) to calculate $\left[\hat{P}^2, \hat{L}_x\right],\left[\hat{R}^2, \hat{L}_y\right]$ and $\left[\hat{R}^2, \hat{L}_x\right]$, where $\hat{P}^2=\hat{P}_x^2+\hat{P}_y^2+\hat{P}_z^2$

PK

Pramod Kumar

Numerade Educator

Problem 17


Consider a particle whose wave function is given by $\psi(x, y, z)=A\left[(x+z) y+z^2\right] / r^2-A / 3$, where $A$ is a constant.
(a) Is $\psi$ an eigenstate of $\hat{\vec{L}}^2$ ? If yes, what is the corresponding eigenvalue? Is it also an eigenstate of $\hat{L}_z$ ?
(b) Find the constant $A$ so that $\psi$ is normalized.
(c) Find the relative probabilities for measuring the various values of $\hat{L}_z$ and $\hat{L}^2$, and then calculate the expectation values of $\hat{L}_z$ and $\hat{\vec{L}}^2$.
(d) Calculate $\hat{L}_{ \pm}|\psi\rangle$ and then infer $\left\langle\psi\left|\hat{L}_{ \pm}\right| \psi\right\rangle$.

Check back soon!

Problem 18


Consider a system which is in the state
$$
\psi(\theta, \varphi)=\sqrt{\frac{2}{13}} Y_{3,-3}+\sqrt{\frac{3}{13}} Y_{3,-2}+\sqrt{\frac{3}{13}} Y_{30}+\sqrt{\frac{3}{13}} Y_{3,-2}+\sqrt{\frac{2}{13}} Y_{33} .
$$
(a) If $\hat{L}_z$ were measured, what values will one obtain and with what probabilities?
(b) If after a measurement of $\hat{L}_z$ we find $l_z=2 \hbar$, calculate the uncertainties $\Delta L_x$ and $\Delta L_y$ and their product $\Delta L_x \Delta L_y$.
(a) Find $\left\langle\psi\left|\hat{L}_x\right| \psi\right\rangle$ and $\left\langle\psi\left|\hat{L}_y\right| \psi\right\rangle$.

Check back soon!

03:41
Problem 19


(a) Calculate the energy eigenvalues of an axially symmetric rotator and find the degeneracy of each energy level (i.e., for each value of the azimuthal quantum number $m$, how many states $|l \mathrm{~m}\rangle$ correspond to the same energy). We may recall that the Hamiltonian of an axially symmetric rotator is given by
$$
\hat{H}=\frac{\hat{L}_x^2+\hat{L}_y^2}{2 I_1}+\frac{\hat{L}_z^2}{2 I_2}
$$
where $I_1$ and $I_2$ are the moments of inertia.
(b) From part (a) infer the energy eigenvalues for the various levels of $l=3$.
(c) In the case of a rigid rotator (i.e., $I_1=I_2=I$ ), find the energy expression and the corresponding degeneracy relation.
(d) Calculate the orbital quantum number $l$ and the corresponding energy degeneracy for a rigid rotator where the magnitude of the total angular momentum is $\sqrt{56} \hbar$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (37)

Abhijit Das

Numerade Educator

Problem 20


Consider a system of total angular momentum $j=1$. We are interested here in the measurement of $\hat{J}_y$; its matrix is given by
$$
\hat{J}_y=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) .
$$
(a) What are the possible values will we obtain when measuring $\hat{J}_y$ ?
(b) Calculate $\left\langle\hat{J}_z\right\rangle,\left\langle\hat{J}_z^2\right\rangle$ and $\Delta J_z$ if the system is in the state $j_y=\hbar$.
(c) Repeat (b) for $\left\langle\hat{J}_x\right\rangle,\left\langle\hat{J}_x^2\right\rangle$ and $\Delta J_x$.

Check back soon!

04:17
Problem 21


Calculate $Y_{3, \pm 2}(\theta, \varphi)$ by applying the ladder operators $\hat{L}_{ \pm}$on $Y_{3, \pm 1}(\theta, \varphi)$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (41)

Abhijit Das

Numerade Educator

Problem 22


Consider a system of total angular momentum $j=1$. We want to carry out measurements on
$$
\hat{J}_z=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$
(a) What are the possible values will we obtain when measuring $\hat{J}_z$ ?
(b) Calculate $\left\langle\hat{J}_x\right\rangle,\left\langle\hat{J}_x^2\right\rangle$ and $\Delta J_x$ if the system is in the state $j_z=-\hbar$.
(c) Repeat (b) for $\left\langle\hat{J}_y\right\rangle,\left\langle\hat{J}_y^2\right\rangle$ and $\Delta J_y$.

Check back soon!

Problem 23


(a) Find the eigenvalues and eigenstates of the spin operator $\vec{S}$ of an electron in the direction of a unit vector $\vec{n}$; assume that $\vec{n}$ lies in the $y z$ plane.
(b) Find the probability of measuring $\hat{S}_z=-\hbar / 2$.
(c) Assuming that the eigenvectors of the spin calculated in (a) correspond to $t=0$, find these eigenvectors at time $t$.

Check back soon!

01:23
Problem 24


Consider a system whose spin direction is in the $x y$ plane.
(a) Find the eigenvalues and eigenstates of the spin operator $\vec{S}$ of an electron in the direction of a unit vector $\vec{n}$; assume that $\vec{n}$ lies in the $x y$ plane.
(b) Find the probability of measuring $\hat{S}_z=\hbar / 2$.
(c) Assuming that the eigenvectors of the spin calculated in (a) correspond to $t=0$, find these eigenvectors at time $t$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (46)

Dominador Tan

Numerade Educator

Problem 25


Consider a system whose wave function is $\psi(x, y, z)=(1 / 4 \sqrt{\pi}) z / r+(1 / \sqrt{3 \pi}) x / r$.
(a) Express $\psi(x, y, z)$ in terms of the spherical harmonics then calculate $\hat{\vec{L}}^2 \psi(x, y, z)$ and $\hat{L}_z \psi(x, y, z)$. Is $\psi(x, y, z)$ an eigenstate of $\hat{\vec{L}}^2$ or $\hat{L}_z$ ?
(b) Calculate $\hat{L}_{ \pm \psi}(x, y, z)$ and $\left\langle\psi\left|\hat{L}_{ \pm}\right| \psi\right\rangle$.
(c) If a measurement of the $z$-component of the orbital angular momentum is carried out, find the probabilities corresponding to finding the results $0, \hbar$ and $-\hbar$.

Check back soon!

Problem 26


Consider a system whose wave function is $\psi(x, y, z)=\frac{1}{2} Y_{00}+\frac{1}{\sqrt{3}} Y_{11}+\frac{1}{2} Y_{1,-1}+\frac{1}{\sqrt{6}} Y_{22}$.
(a) Is $\psi(x, y, z)$ normalized?
(b) Is $\psi(x, y, z)$ an eigenstate of $\hat{\hat{L}^2}$ or $\hat{L}_z$ ?
(c) Calculate $\hat{L}_{ \pm} \psi(x, y, z)$ and $\left\langle\psi\left|\hat{L}_{ \pm}\right| \psi\right\rangle$.
(d) If a measurement of the $z$-component of the orbital angular momentum is carried out, find the probabilities corresponding to finding the results $0, \hbar,-\hbar$ and $2 \hbar$.

Check back soon!

08:53
Problem 27


Using the expression of $\hat{L}_{-}$in spherical coordinates, show the following two commutators: $\left[\hat{L}_{-}, e^{-i \varphi} \sin \theta\right]=0$ and $\left[\hat{L}_{-}, \cos \theta\right]=\hbar e^{-i \varphi} \sin \theta$

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (51)

David Morabito

Numerade Educator

02:19
Problem 28


Consider a particle whose angular momentum is $l=1$.
(a) Find the eigenvalues and eigenvectors, $\left|1, m_x\right\rangle$, of $\hat{L}_x$.
(b) Express the state $\left|1, m_x=1\right\rangle$ as a linear superposition of the eigenstates of $\hat{L}_z$. Hint: you need first to find the eigenstates of $L_x$ and find which of them corresponds to the eigenvalue $m_x=1$; this eigenvector will be expanded in the $z$ basis.
(c) What is the probability of measuring $m_z=1$ when the particle in the eigenstate $\left|1, m_x=1\right\rangle$ ? What about the probability corresponding to measuring $m_z=0$ ?
(c) Suppose that a measurement of the $z$-component of angular momentum is performed, and that the result $m_z=1$ is obtained. Now we measure the $x$-component of angular momentum. What are the possible results and with what probabilities?

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (54)

Dominador Tan

Numerade Educator

05:05
Problem 29


Make polar plots in the $x z$ plane with the square magnitude $\left|Y_{l m}\right|^2$ as the distance from the origin as a function of $\theta$ for the cases $l=1$ and $l=2$ for all values of $m$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (57)

Zachary Warner

Numerade Educator

Problem 30


Consider a system which is given in the following angular momentum eigenstates $|l, m\rangle$ :
$$
|\psi\rangle=\frac{1}{\sqrt{7}}|1,-1\rangle+A|1,0\rangle+\sqrt{\frac{2}{7}}|1,1\rangle,
$$
where $A$ is a real constant
(a) Calculate $A$ so that $|\psi\rangle$ is normalized.
(b) Calculate the expectation values of $\hat{L}_x, \hat{L}_y, \hat{L}_z$, and $\hat{\vec{L}}^2$ in the state $|\psi\rangle$.
(c) Find the probability associated with a measurement that gives $1 \hbar$ for the $z$-component of the angular momentum.
(d) Calculate $\left\langle 1, m\left|\hat{L}_{+}^2\right| \psi\right\rangle$ and $\left\langle 1, m\left|\hat{L}_{-}^2\right| \psi\right\rangle$.

Check back soon!

Problem 31


Consider a particle of angular momentum $j=3 / 2$.
(a) Find the matrices representing the operators $\hat{J}^2, \hat{J}_x, \hat{J}_y$, and $\hat{J}_z$ in the $\left\{\left|\frac{3}{2}, m\right\rangle\right\}$ basis.
(b) Using these matrices, show that $\hat{J}_x, \hat{J}_y, \hat{J}_z$ satisfy the commutator $\left[\hat{J}_x, \hat{J}_y\right]=i \hbar \hat{J}_z$.
(c) Calculate the mean values of $\hat{J}_x$ and $\hat{J}_x^2$ with respect to the state $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$.
(d) Calculate $\Delta J_x \Delta J_y$ with respect to the state
$$
\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$
and verify that this product satisfies Heisenberg's uncertainty principle.

Check back soon!

09:01
Problem 32


Consider the Pauli matrices
$$
\sigma_x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$
(a) Verify that $\sigma_x^2=\sigma_y^2=\sigma_z^2=I$, where $I$ is the unit matrix
$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$
(b) Calculate the commutators $\left[\sigma_x, \sigma_y\right],\left[\sigma_x, \sigma_z\right]$, and $\left[\sigma_y, \sigma_z\right]$.
(c) Calculate the anticommutator $\sigma_x \sigma_y+\sigma_y \sigma_x$.
(d) Show that $e^{i \theta \sigma_y}=I \cos \theta+i \sigma_y \sin \theta$, where $I$ is the unit matrix.
(e) Derive an expression for $e^{i \theta \sigma_z}$ by analogy with the one for $\sigma_z$.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (62)

Anthony Ramos

Numerade Educator

21:59
Problem 33


Consider a spin $\frac{3}{2}$ particle whose Hamiltonian is given by
$$
\hat{H}=\frac{\varepsilon_0}{\hbar^2}\left(\hat{S}_x^2-\hat{S}_y^2\right)-\frac{\varepsilon_0}{\hbar^2} \hat{S}_z^2
$$
where $\varepsilon_0$ is a constant having the dimensions of energy.
(a) Find the matrix of the Hamiltonian and diagonalize it to find the energy levels.
(b) Find the eigenvectors and verify that the energy levels are doubly degenerate.

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (65)

Dr. Rajveer Singh

Numerade Educator

21:59
Problem 34


Find the energy levels of a spin $\frac{5}{2}$ particle whose Hamiltonian is given by
$$
\hat{H}=\frac{\varepsilon_0}{\hbar^2}\left(\hat{S}_x^2+\hat{S}_y^2\right)+\frac{\varepsilon_0}{\hbar} \hat{S}_z
$$
where $\varepsilon_0$ is a constant having the dimensions of energy. Are the energy levels degenerate?

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (68)

Dr. Rajveer Singh

Numerade Educator

Problem 35


Consider a particle of spin $\frac{3}{2}$. Find the matrix for the component of the spin along a unit vector with arbitrary direction $\vec{n}=(\sin \theta \cos \varphi) \vec{i}+(\sin \theta \sin \varphi) \vec{j}+(\cos \theta) \vec{k}$. Find its eigenvalues and eigenvectors.

Check back soon!

Chapter 5, Angular Momentum Video Solutions, Quantum mechanics: Concepts and Applications | Numerade (2024)

References

Top Articles
Latest Posts
Article information

Author: Gov. Deandrea McKenzie

Last Updated:

Views: 5552

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.